Sintering Fase Cair Tanpa Tekanan pada Material Berbasis Aluminium
Main Article Content
Abstract
Kemajuan teknologi dan fokus pada praktik berkelanjutan telah memperluas aplikasi aluminium (Al) dan paduannya, mendorong peningkatan permintaan yang stabil. Studi ini menyelidiki pemadatan Al dan material berbasis Al melalui sintering fase cair tanpa tekanan. Sampel dengan 4–20 vol.% AlSi 12 disinter pada 640°C selama 1 jam menunjukkan kerapatan relatif (RD) tertinggi dan porositas global (GP) terendah tanpa deformasi bentuk. Peningkatan jumlah bahan pembantu sintering meningkatkan kerapatan sampel, yang terkonfirmasi melalui analisis mikrostruktur menggunakan SEM, yang menunjukkan perkembangan kerapatan dari koalesensi partikel pada 4 vol.% AlSi 12 hingga pengisian pori dan pembentukan batas butir pada 20 vol.% AlSi 12. Analisis XRD menunjukkan parameter kisi yang diperluas dan ukuran kristalit yang hampir serupa dengan bubuk Al awal. Sampel dengan RD lebih dari 90% memiliki konduktivitas termal antara 170 hingga 200 W/mK dan kekerasan rata-rata 29 HV5. Peningkatan tekanan pemadatan dari 50 MPa menjadi 100–200 MPa pada sampel dengan 12–20 vol.% AlSi 12 meningkatkan pemadatan, dengan sampel yang dipadatkan pada 200 MPa dan 15 vol.% AlSi 12 mencapai RD 99%, konduktivitas termal 195 W/mK pada 30°C, dan kekerasan 30 HV5
Article Details
References
G. E. Totten and D. S. MacKenzie, Handbook of aluminum: vol. 1: physical metallurgy and processes, vol. 1. CRC press, 2003.
A. T. Sucgang, L. Cuzacq, J.-L. Bobet, Y. Lu, and J.-F. Silvain, “Pressure-Less Liquid-Phase Sintering of Aluminum-Based Materials,” J. Manuf. Mater. Process., vol. 9, no. 1, 2025, doi: 10.3390/jmmp9010004.
M. Khan, A. Patil, J. Christudasjustus, T. Borkar, and R. Gupta, “Spark plasma sintering of a high-energy ball milled Mg-10 wt% Al alloy,” J. Magnes. Alloys, vol. 8, no. 2, pp. 319–328, 2020.
M. S. Ahmed, M. S. Anwar, M. S. Islam, and M. Arifuzzaman, “Experimental study on the effects of three alloying elements on the mechanical, corrosion and microstructural properties of aluminum alloys,” Results Mater., vol. 20, p. 100485, 2023.
K. Godbole, B. Bhushan, S. N. Murty, and K. Mondal, “Al-Si controlled expansion alloys for electronic packaging applications,” Prog. Mater. Sci., p. 101268, 2024.
W. Judge and G. Kipouros, “Powder metallurgy aluminum alloys: Structure and porosity,” in Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print), CRC Press, 2018, pp. 1977–1995.
M. Okugawa, Y. Ohigashi, Y. Furishiro, Y. Koizumi, and T. Nakano, “Equiaxed grain formation by intrinsic heterogeneous nucleation via rapid heating and cooling in additive manufacturing of aluminum-silicon hypoeutectic alloy,” J. Alloys Compd., vol. 919, p. 165812, 2022.
L. Wu et al., “Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering,” J. Mater. Res. Technol., vol. 14, pp. 1419–1429, 2021.
J. Liu et al., “Fabrication, microstructure, and properties of SiC/Al 4 SiC 4 multiphase ceramics via an in-situ formed liquid phase sintering,” J. Adv. Ceram., vol. 9, pp. 193–203, 2020.
S. Miladinović, B. Stojanović, S. Gajević, and A. Vencl, “Hypereutectic aluminum alloys and composites: a review,” Silicon, vol. 15, no. 6, pp. 2507–2527, 2023.
L. Mo, X. Zhou, X. Liu, M. Zhan, Y.-J. Zhao, and J. Du, “Microstructure and thermal-physical properties of hypereutectic Al-Ni alloys,” J. Mater. Res. Technol., vol. 24, pp. 6227–6237, 2023.
M. Vanzetti et al., “Design and Characterization of Innovative Gas-Atomized Al-Si-Cu-Mg Alloys for Additive Manufacturing,” Metals, vol. 13, no. 11, 2023, doi: 10.3390/met13111845.
S. Jang et al., “Controlling the Phase Transformation of Alumina for Enhanced Stability and Catalytic Properties,” Angew. Chem. Int. Ed., vol. 63, no. 15, p. e202400270, 2024, doi: https://doi.org/10.1002/anie.202400270.
E. Soares et al., “Microstructure and Mechanical Properties of AA7075 Aluminum Alloy Fabricated by Spark Plasma Sintering (SPS),” Materials, vol. 14, no. 2, 2021, doi: 10.3390/ma14020430.
A. Zhang and Y. Li, “Thermal Conductivity of Aluminum Alloys—A Review,” Materials, vol. 16, no. 8, 2023, doi: 10.3390/ma16082972.
Z. Kong, H. Huang, Y. Li, B. Yu, B. Chen, and R. Li, “Effect of sintering process on microstructure and properties of Al–Si alloy made by powder metallurgy for electronic packaging application,” Mater. Res. Express, vol. 10, no. 6, p. 066506, Jun. 2023, doi: 10.1088/2053-1591/acd990.
V. Tirth and A. Arabi, “Effect of Liquid Forging Pressure on Solubility and Freezing Coefficients of Cast Aluminum 2124, 2218 and 6063 Alloys,” Arch. Metall. Mater., vol. 65, no. No 1, pp. 357–366, Mar. 2020, doi: 10.24425/amm.2020.131738.
G. Hatti, V. H. Vishwanath, and K. R. Dinesh, “Effect of Silicon Content on wear and Hardness of Al-Si Alloys,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1065, no. 1, p. 012010, Feb. 2021, doi: 10.1088/1757-899X/1065/1/012010.