Retensi Kekuatan Material Komposit Serat Karbon/Epoxy Vitrimer untuk Struktur Primer: Menuju Komposit Serat Karbon yang dapat Didaur Ulang dan Digunakan Kembali

Main Article Content

ahmad soripada
roy lamrun sianturi

Abstract

Penelitian ini menyelidiki retensi kekuatan komposit vitrimer berbasis bio yang diperkuat serat karbon (CFRP), dengan fokus pada potensi daur ulang dan penggunaan kembali material yang didorong oleh aspek ekonomi lingkungan dan sirkular. Komposit yang diteliti menggunakan resin epoksi berbasis diglisidil eter biospenol A (DGEBA), yang dipadukan dengan asam trikarboksilat (asam sitrat) dan kardanol, serta diperkuat dengan serat karbon untuk meningkatkan kinerja material. Melalui pengujian kalorimetri pemindaian diferensial (DSC) dan spektroskopi inframerah transformasi Fourier (FTIR), komposisi kimia dan perilaku pengawetan vitrimer dianalisis. Pengujian mekanis menunjukkan bahwa vitrimer DGEBA/CA/kardanol memiliki sifat termomekanis yang setara dengan epoksi yang diawetkan dengan agen pengawet berbasis minyak bumi, dengan kekuatan tarik maksimum sekitar 50 MPa. Keunggulan utama dari komposit vitrimer adalah kemampuannya untuk larut dalam pelarut dimetilformamida (DMF), memungkinkan pemulihan serat karbon. Serat yang dipulihkan mempertahankan lebih dari 95% kekuatan tariknya, setara dengan komposit karbon baru, yang menegaskan potensi daur ulang serat karbon untuk aplikasi primer dan sekunder. Penelitian ini membuka peluang untuk daur ulang komposit CFRP yang efisien dan mendukung keberlanjutan material komposit dengan pendekatan ekonomi sirkular.

Article Details

How to Cite
soripada, ahmad, & roy lamrun sianturi. (2024). Retensi Kekuatan Material Komposit Serat Karbon/Epoxy Vitrimer untuk Struktur Primer: Menuju Komposit Serat Karbon yang dapat Didaur Ulang dan Digunakan Kembali . Journal of Technology Renewal and Advanced Science, 1(2), 65–75. Retrieved from https://ejournal.giopersada.com/index.php/JTERAS/article/view/46
Section
Articles

References

F. Fang et al., “A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins,” Compos. Commun., vol. 17, pp. 104–108, 2020.

S. Huo et al., “A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances,” J. Hazard. Mater., vol. 386, p. 121984, 2020.

X. Huan et al., “High performance epoxy composites prepared using recycled short carbon fiber with enhanced dispersibility and interfacial bonding through polydopamine surface-modification,” Compos. Part B Eng., vol. 193, p. 107987, 2020.

X. Ma et al., “Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance,” Compos. Part B Eng., vol. 192, p. 108005, 2020.

Y. Wang, X. Gao, X. Wu, and C. Luo, “Facile synthesis of Mn3O4 hollow polyhedron wrapped by multiwalled carbon nanotubes as a high-efficiency microwave absorber,” Ceram. Int., vol. 46, no. 2, pp. 1560–1568, 2020.

B. Krishnakumar, R. P. Sanka, W. H. Binder, V. Parthasarthy, S. Rana, and N. Karak, “Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers,” Chem. Eng. J., vol. 385, p. 123820, 2020.

D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, “Silica-like malleable materials from permanent organic networks,” Science, vol. 334, no. 6058, pp. 965–968, 2011.

V. Kumar, W. Kuang, and L. S. Fifield, “Carbon Fiber-Based Vitrimer Composites: A Path toward Current Research That Is High-Performing, Useful, and Sustainable,” Materials, vol. 17, no. 13, p. 3265, 2024.

F. Zhou et al., “Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange,” Compos. Sci. Technol., vol. 167, pp. 79–85, 2018.

K. Yu, Q. Shi, M. L. Dunn, T. Wang, and H. J. Qi, “Carbon fiber reinforced thermoset composite with near 100% recyclability,” Adv. Funct. Mater., vol. 26, no. 33, pp. 6098–6106, 2016.

N. Lorwanishpaisarn et al., “Carbon fiber/epoxy vitrimer composite patch cured with bio‐based curing agents for one‐step repair metallic sheet and its recyclability,” J. Appl. Polym. Sci., vol. 138, no. 47, p. 51406, 2021.

W. Li, L. Xiao, J. Huang, Y. Wang, X. Nie, and J. Chen, “Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship,” Compos. Sci. Technol., vol. 227, p. 109575, 2022.

J. Xia et al., “Bio-Based Epoxy Vitrimers with Excellent Properties of Self-Healing, Recyclability, and Welding,” Polymers, vol. 16, no. 15, p. 2113, 2024.

S. Ma et al., “Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger,” J. Mater. Chem. A, vol. 7, no. 3, pp. 1233–1243, 2019.

B. S. Mustafa, G. M. Jamal, and O. G. Abdullah, “Improving the tensile, toughness, and flexural properties of epoxy resin based nanocomposites filled with ZrO2 and Y2O3 nanoparticles,” Results Phys., vol. 38, p. 105662, 2022.

H. Si et al., “Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks,” Compos. Part B Eng., vol. 199, p. 108278, 2020.

Q. Mu, L. An, Z. Hu, and X. Kuang, “Fast and sustainable recycling of epoxy and composites using mixed solvents,” Polym. Degrad. Stab., vol. 199, p. 109895, 2022.

S. Nartam, S. Budhe, and J. Paul, “Carbon Fiber/Epoxy Vitrimer Composite Material for Pressure Vessels: Towards Development of Sustainable Materials,” presented at the Materials Science Forum, Trans Tech Publ, 2024, pp. 89–93.

Similar Articles

You may also start an advanced similarity search for this article.