Implemenstasi Pemodelan Matematika, Simulasi dan Metode Optimasi untuk Peningkatkan Biogas dengan Penekanan pada Proses Berbasis Adsorpsi

Main Article Content

firman Benadetha
Christin Pangaribuan
Indra Fernando

Abstract

The high thermal conductivity and wear resistance of CVD diamond provide potential for the machining of Ti-6Al-4V. By predicting thermomechanical loads, simulations can provide information about the usability of these cutting materials. However, the occurring shear chip formation withi the cutting process leads to unsteady contact conditions. Therefore, a computationally intensive long-term transient simulation is necessary for precise prediction of tool temperatures. In this respect, a user-subroutine has been developed, allowing a high-resolution long-term simulati n with acceptable computing time. By experimental investigations and validation of simulated results, a modelling of temperature distribution within the cutting tool is possible, providing valuable information regarding the contact temperatures.

Article Details

How to Cite
firman Benadetha, Christin Pangaribuan, & Indra Fernando. (2024). Implemenstasi Pemodelan Matematika, Simulasi dan Metode Optimasi untuk Peningkatkan Biogas dengan Penekanan pada Proses Berbasis Adsorpsi. Journal of Technology Renewal and Advanced Science, 1(1), 12–18. Retrieved from https://ejournal.giopersada.com/index.php/JTERAS/article/view/4
Section
Articles

References

K. Obileke, N. Nwokolo, G. Makaka, P. Mukumba, H. Onyeaka, Anaerobic digestion: technology for biogas production as a source of renewable energy—a review, Energy Environ. 32 (2020) 191–225, https://doi.org/10.1177/0958305×20923117.

K.S. Knaebel, H.E. Reinhold, Landfill gas: from rubbish to resource, Adsorption 9 (2019) 87–94, https://doi.org/10.1023/A:1023871415711.

M. Poeschl, S. Ward, P. Owende, Environmental impacts of biogas deployment-part II: Life Cycle Assessment of multiple production and utilization pathways, J. Clean. Prod. 24 (2022) 184–201, https://doi.org/10.1016/j.jclepro.2011.10.030

M. Poeschl, S. Ward, P. Owende, Environmental impacts of biogas deployment -part I: Life Cycle Inventory for evaluation of production process emissions to air, J. Clean. Prod. 24 (2022) 168–183, https://doi.org/10.1016/j.jclepro.2011.10.039

J. Kuo, J. Dow, Biogas production from anaerobic digestion of food waste and relevant air quality implications, J. Air Waste Manag. Assoc. 67 (2017)1000–1011, https://doi.org/10.1080/10962247.2017.1316326.

E. Santos-Clotas, A. Cabrera-Codony, A. Castillo, M.J. Martín, M. Poch, H. Monclús, Environmental decision support system for biogas upgrading to feasible fuel, Energies 12 (2019), https://doi.org/10.3390/en12081546.

Y. Xiao, B.T. Low, S.S. Hosseini, T.S. Chung, D.R. Paul, The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-a review, Prog. Polym. Sci. 34 (2019) 561–580,https://doi.org/10.1016/j.progpolymsci.2008.12.004.

S. Rasi, J. Lantel a, J. Rintala, Trace compounds affecting biogas energy utilisation-a review, Energy Convers. Manag 52 (2011) 3369–3375, https://doi.org/10.1016/j.enconman.2011.07.005.

D. Papurello, A. Boschetti, S. Silvestri, I. Khomenko, F. Biasioli, Real-time monitoring of removal of trace compounds with PTR-MS: biochar experimental investigation, Renew. Energy 125 (2018) 344–355, https://doi.org/10.1016/j.renene.2018.02.122.

K.F. Chin, C. Wan, Y. Li, C.P. Alaimo, P.G. Green, T.M. Young, M.J. Kleeman, Statistical analysis of trace contaminants measured in biogas, Sci. Total Environ.729 (2020), 138702, https://doi.org/10.1016/j.scitotenv.2020.138702.

D. Papurello, L. Tomasi, S. Silvestri, Proton transfer reaction mass spectrometry for the gas cleaning using commercial and waste-derived materials: focus on the siloxane removal for SOFC applications, Int. J. Mass Spectrom. 430 (2018) 69–79,https://doi.org/10.1016/j.ijms.2018.05.002.

Similar Articles

You may also start an advanced similarity search for this article.