Implemenstasi Pemodelan Matematika, Simulasi dan Metode Optimasi untuk Peningkatkan Biogas dengan Penekanan pada Proses Berbasis Adsorpsi
Keywords:
Biogas upgrading, Adsorption, Separation, Mathematical Modeling, Process simulation, OptimizationAbstract
The high thermal conductivity and wear resistance of CVD diamond provide potential for the machining of Ti-6Al-4V. By predicting thermomechanical loads, simulations can provide information about the usability of these cutting materials. However, the occurring shear chip formation withi the cutting process leads to unsteady contact conditions. Therefore, a computationally intensive long-term transient simulation is necessary for precise prediction of tool temperatures. In this respect, a user-subroutine has been developed, allowing a high-resolution long-term simulati n with acceptable computing time. By experimental investigations and validation of simulated results, a modelling of temperature distribution within the cutting tool is possible, providing valuable information regarding the contact temperatures.
References
K. Obileke, N. Nwokolo, G. Makaka, P. Mukumba, H. Onyeaka, Anaerobic digestion: technology for biogas production as a source of renewable energy—a review, Energy Environ. 32 (2020) 191–225, https://doi.org/10.1177/0958305×20923117.
K.S. Knaebel, H.E. Reinhold, Landfill gas: from rubbish to resource, Adsorption 9 (2019) 87–94, https://doi.org/10.1023/A:1023871415711.
M. Poeschl, S. Ward, P. Owende, Environmental impacts of biogas deployment-part II: Life Cycle Assessment of multiple production and utilization pathways, J. Clean. Prod. 24 (2022) 184–201, https://doi.org/10.1016/j.jclepro.2011.10.030
M. Poeschl, S. Ward, P. Owende, Environmental impacts of biogas deployment -part I: Life Cycle Inventory for evaluation of production process emissions to air, J. Clean. Prod. 24 (2022) 168–183, https://doi.org/10.1016/j.jclepro.2011.10.039
J. Kuo, J. Dow, Biogas production from anaerobic digestion of food waste and relevant air quality implications, J. Air Waste Manag. Assoc. 67 (2017)1000–1011, https://doi.org/10.1080/10962247.2017.1316326.
E. Santos-Clotas, A. Cabrera-Codony, A. Castillo, M.J. Martín, M. Poch, H. Monclús, Environmental decision support system for biogas upgrading to feasible fuel, Energies 12 (2019), https://doi.org/10.3390/en12081546.
Y. Xiao, B.T. Low, S.S. Hosseini, T.S. Chung, D.R. Paul, The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-a review, Prog. Polym. Sci. 34 (2019) 561–580,https://doi.org/10.1016/j.progpolymsci.2008.12.004.
S. Rasi, J. Lantel a, J. Rintala, Trace compounds affecting biogas energy utilisation-a review, Energy Convers. Manag 52 (2011) 3369–3375, https://doi.org/10.1016/j.enconman.2011.07.005.
D. Papurello, A. Boschetti, S. Silvestri, I. Khomenko, F. Biasioli, Real-time monitoring of removal of trace compounds with PTR-MS: biochar experimental investigation, Renew. Energy 125 (2018) 344–355, https://doi.org/10.1016/j.renene.2018.02.122.
K.F. Chin, C. Wan, Y. Li, C.P. Alaimo, P.G. Green, T.M. Young, M.J. Kleeman, Statistical analysis of trace contaminants measured in biogas, Sci. Total Environ.729 (2020), 138702, https://doi.org/10.1016/j.scitotenv.2020.138702.
D. Papurello, L. Tomasi, S. Silvestri, Proton transfer reaction mass spectrometry for the gas cleaning using commercial and waste-derived materials: focus on the siloxane removal for SOFC applications, Int. J. Mass Spectrom. 430 (2018) 69–79,https://doi.org/10.1016/j.ijms.2018.05.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Technology Renewal and Advanced Science
This work is licensed under a Creative Commons Attribution 4.0 International License.